Pulsed Ultraviolet Light Reduces Immunoglobulin E Binding to Atlantic White Shrimp (Litopenaeus setiferus) Extract

نویسندگان

  • Sandra Shriver
  • Wade Yang
  • Si-Yin Chung
  • Susan Percival
چکیده

Pulsed ultraviolet light (PUV), a novel food processing and preservation technology, has been shown to reduce allergen levels in peanut and soybean samples. In this study, the efficacy of using PUV to reduce the reactivity of the major shrimp allergen, tropomyosin (36-kDa), and to attenuate immunoglobulin E (IgE) binding to shrimp extract was examined. Atlantic white shrimp (Litopenaeus setiferus) extract was treated with PUV (3 pulses/s, 10 cm from light source) for 4 min. Tropomyosin was compared in the untreated, boiled, PUV-treated and [boiled+PUV]-treated samples, and changes in the tropomyosin levels were determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). IgE binding of the treated extract was analyzed via immunoblot and enzyme-linked immunosorbent assay (ELISA) using pooled human plasma containing IgE antibodies against shrimp allergens. Results showed that levels of tropomyosin and IgE binding were reduced following PUV treatment. However, boiling increased IgE binding, while PUV treatment could offset the increased allergen reactivity caused by boiling. In conclusion, PUV treatment reduced the reactivity of the major shrimp allergen, tropomyosin, and decreased the IgE binding capacity of the shrimp extract.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new class (penaeidin class 4) of antimicrobial peptides from the Atlantic white shrimp (Litopenaeus setiferus) exhibits target specificity and an independent proline-rich-domain function.

A highly pure, chemically defined representative of a new class of antimicrobial peptide from the Atlantic white shrimp (Litopenaeus setiferus), penaeidin class 4 [Pen4-1 (penaeidin class 4 isoform 1)], was produced synthetically. Chemical synthesis was achieved by native ligation from two separate domains yielding a bioactive peptide that reflected the characteristics of native penaeidin. Synt...

متن کامل

A ten-month diseases survey on wild Litopenaeus setiferus (Decapoda: Penaeidae) from Southern Gulf of Mexico.

The development of shrimp aquaculture in Mexican coasts of the Gulf of Mexico began to be explored using the Pacific white shrimp Litopenaeus vannamei in the mid 90's. Many concerns over the risk of disease transmission to the economically important native penaeids, have been the main deterrent for the aquaculture of L. vannamei in the region. Concurrently, more than 10 years of research experi...

متن کامل

Survey of protozoan, helminth and viral infections in shrimp Litopenaeus setiferus and prawn Macrobrachium acanthurus native to the Jamapa River region, Mexico.

We surveyed protozoan and metazoan parasites as well as white spot syndrome virus (WSSV) and infectious hypodermal hematopoietic necrosis virus (IHHNV) in white shrimp Litopenaeus setiferus and the palaemonid prawn Macrobrachium acanthurus native to the lower Jamapa River region of Veracruz, Mexico. The presence of parasites and the infection parameters were evaluated in 113 palaemonid prawns c...

متن کامل

Position of Larval Tapeworms, Polypocephalus sp., in the Ganglia of Shrimp, Litopenaeus setiferus

Parasites that invade the nervous system of their hosts have perhaps the best potential to manipulate their host's behavior, but how they manipulate the host, if they do at all, could depend on their position within the host's nervous system. We hypothesize that parasites that live in the nervous system of their host will be randomly distributed if they exert their influence through non-specifi...

متن کامل

Motor neurons in the escape response circuit of white shrimp (Litopenaeus setiferus)

Many decapod crustaceans perform escape tailflips with a neural circuit involving giant interneurons, a specialized fast flexor motor giant (MoG) neuron, populations of larger, less specialized fast flexor motor neurons, and fast extensor motor neurons. These escape-related neurons are well described in crayfish (Reptantia), but not in more basal decapod groups. To clarify the evolution of the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2011